Ядерный матрикс строение и функции. Ядро клетки: функции и структура. Структурные типы ядрышек

Ядрышки – плотные, интенсивно окрашенные округлые образования в ядре размером 1-2 мкм. Их может быть несколько. Ядрышки образуются в ядре в области ядрышковых организаторов, которые обычно располагаются в области вторичных перетяжек некоторых хромосом. Там находятся гены, кодирующие рибосомную РНК. Ядрышки состоят из гранулярного и фибрилярного компонентов. Гранулы ядрышек представляют собой субъединицы рибосом, а нити – молекулы образовавшейся рибосомной РНК. Последние связываются с белками, поступающими из цитоплазмы, с образованием субъединиц рибосом. Эти субъединицы через ядерные поры выходят в цитоплазму, где объединяются в рибосомы и связываются с информационной РНК для синтеза белка. Чем выше функциональная, синтетическая активность клетки, тем многочисленней и крупнее её ядрышки.

Транскрипция нерибосомных генов.

Ядерный белковый матрикс.

Кариоплазма (ядерный сок) – жидкий компонент ядра, истинный раствор биополимеров, в котором во взвешенном состоянии расположены хромосомы и ядрышко. По своим физико-химическим свойствам кариоплазма близка к гиалоплазме.

Ядерная оболочка.

Ядерная оболочка отделяет ядро от цитоплазмы, отграничивает его содержимое и обеспечивает обмен веществ между ядром и цитоплазмой. Ядерная оболочка состоит из двух биологических мембран , между которыми расположено перинуклеарное пространство шириной 15-40 нм. Наружная мембрана ядра покрыта рибосомами и переходит в мембраны гранулярной эндоплазматической сети. К внутренней мембране прилежит слой белковых филаментов (ламина ) кариоскелета, через который к ядерной оболочке прикрепляются хромосомы (рис. 2-9).

В ядерной оболочке имеются отверстия – ядерные поры диаметром 90 нм (рис. 2-10). Они являются не просто отверстиями, а очень сложно организованными комплексами пор. В их состав входят белки, которые образуют по краю поры три ряда по 8 гранул, а в центре поры расположена 1 гранула, связанная белковыми нитями с периферическими гранулами.

При этом образуется перегородка, диафрагма толщиной 5 нм. Эти комплексы пор обладают избирательной проницаемостью: через них не могут пройти мелкие ионы, но переносятся длинные нити информационной РНК и субъединицы рибосом.

В ядре имеется несколько тысяч пор, занимающих от 3 до 35% его поверхности. Количество их значительно больше в клетках с интенсивными синтетическими и обменными процессами. В ядерных оболочках зрелых сперматозоидов, где биосинтез белка не происходит, поры не обнаружены. Замечено также, что чем выше функциональная активность клетки, тем сильнее извита кариолемма (для увеличения площади обмена веществ между ядром и цитоплазмой).

Ядро может содержать ядерный скелет, который помогает организовать его функции

В предыдущих статьях на сайте мы рассмотрели некоторые ядерные домены и субкомпартменты , которые обладают уникальным составом и функциями. В ядре также происходят другие процессы, например репликация ДНК. Считается, что макромолекулярные аппараты репликации и сплайсинга могут быть связаны с определенными структурами ядра.

В ранней S-фазе цикла , когда происходит синтез , в клетке существует много сайтов репликации. По мере протекания синтеза они сливаются, и в результате остаются лишь несколько десятков более крупных сайтов. Эти крупные сайты называются фабрики репликации ДНК.

На рисунке ниже показано распределение этих фабрик в различных стадиях S-фазы . Поскольку в каждый момент времени количество точек начала репликации превышает количество фабрик репликации, то каждая фабрика должна содержать десятки или сотни точек начала репликации. Аналогичные исследования позволяют предполагать, что транскрипция также может происходить в ограниченном количестве сайтов, называемых фабрики транскрипции.

Локализация биосинтетических процессов в отдельных сайтах позволяет предполагать существование в ядре некой опорной структуры. Упорядоченная скелетная структура, напоминающая цитоскелет , в ядре отсутствует. Однако некоторые исследования позволяют предполагать наличие в ядре сетеобразной структуры, которая называется ядерный матрикс.

В отличие от цитоскелета матрикс становится видимым только после обработки ядра детергентами, ДНКазой и растворами высокой ионной силы. При такой обработке удаляется много компонентов, включая почти всю ДНК и мембраны, а остаются только нерастворимые белки и часть РНК. Матрикс содержит короткие волокна, по размеру близкие к промежуточным филаментам, актину (но не к его фибриллярной форме) и ко многим другим белкам. Эти компоненты не организуются в более крупные структуры.

Поскольку ядерный матрикс растворим относительно плохо, его трудно изучать как целое. Некоторые исследователи полагают, что ядерный матрикс представляет собой артефактную структуру, поскольку становится видимым только после жесткой процедуры экстракции. Однако, поскольку в ядре происходят многие важные и сложные процессы, которые должны выполняться с максимальной точностью, возможно существование некой организующей опорной структуры.

К числу возможной функции опорной ядерной структуры относится организация молекулярных машин репликации, транскрипции и процессинга РНК, которые представлены реплисомой, комплексом РНК-полимераза II-холофермент и сплайсеосомой соответственно. Хотя эти большие мультисубъединичные комплексы обладают гораздо меньшей массой, чем хромосомы, по размеру они превышают свои субстраты - нуклеиновые кислоты.

Данные исследования структуры этих комплексов показывают, что они обладают специальной канавкой, обеспечивающей прохождение цепи нуклеиновой кислоты по комплексу. По данным многих исследований, эти комплексы присоединены к опорной ядерной структуре. Это означает, что когда начинается репликация, транскрипция и сплайсинг, соответствующие молекулярные машины фиксируются, и через них продвигаются нуклеиновые кислоты.

Репликация ДНК происходит в ограниченном количестве сайтов, которые называются фабрики репликации.
ДНК метится бромдезоксиуридином (BrdU) и визуализируется с использованием антител к BrdU, конъюгированных с флуорофором.
Представлены фотографии клеток в различные промежутки времени после митоза.

Ферментативные фабрики,
осуществляющие репликацию ДНК и сплайсинг РНК,
могут быть связаны с ядерным матриксом.

Ядерный матрикс

представляет собой систему фибриллярных белков, выполняющих как структурную (скелетную) функцию, так и регуляторную в процессах репликации, транскрипции, созревании молекул РНК (процессинг) и перемещении их как внутри ядра, так и за его пределами.

Кариоплазма -- субсистема ядерного аппарата, аналогичная гиалоплазме. Кариоплазма -- второй компонент внутренней среды клетки. Она создает для ядерных структур специфическое микроокружение, обеспечивающее им нормальные условия для функционирования. Благодаря наличию в ядерной оболочке поровых комплексов кариоплазма взаимодействует с гиалоплазмой.

Структурами ядра, ответственными за хранение и передачу наследственной информации клетки, являются хромосомы, состоящие из дезоксирибонуклеопротеидов. Хромосомы целиком видны только в клетках, делящихся митозом. В некоторых хромосомах имеются вторичные перетяжки -- ядрышковые организаторы. В них локализована ДНК, ответственная за синтез рРНК.

Одномембранные органоиды

Лизосомма -- окружённый мембраной клеточный органоид, в полости которого поддерживается кислая среда и находится множество растворимых гидролитических ферментов. Лизосома отвечает за внутриклеточное переваривание макромолекул, в том числе при аутофагии; лизосома способна к секреции своего содержимого в процессе лизосомного экзоцитоза; также лизосома участвует в некоторых внутриклеточных сигнальных путях, связанных сметаболизмом и ростом клетки.

Лизосомы были открыты в 1955 году бельгийским биохимиком Кристианом де Дювом. Лизосомы есть во всех клетках млекопитающих, за исключением эритроцитов.

С нарушением функций лизосом связан ряд наследственных заболеваний у человека, называемых лизосомными болезнями накопления.

Один из признаков лизосом -- наличие в них ряда ферментов (кислых гидролаз), способных расщеплять белки, углеводы, липиды и нуклеиновые кислоты. К числу ферментов лизосом относятся катепсины (тканевые протеазы), кислая рибонуклеаза, фосфолипаза и др. Всего полость лизосомы содержит около 60 растворимых кислых гидролитических ферментов.

Для лизосом характерна кислая реакция внутренней среды, которая обеспечивает оптимум работы лизосомных гидролаз. Деградация достигается за счет присутствия в лизосомах различных расщепляющих ферментов -- гидролаз с оптимумом действия в кислой области. Главный фермент лизосом -- кислая фосфатаза. В мембране лизосом находятся АТФ-зависимые протонные насосы вакуольного типа. Они обогащают лизосомы протонами, вследствие чего для внутренней среды лизосом рН 4,5-5,0 (в то время как в цитоплазме рН 7,0-7,3). Лизосомные ферменты имеют оптимум рН около 5,0, т. е. в кислой области. При рН, близких к нейтральным, характерным для цитоплазмы, эти ферменты обладают низкой активностью. Очевидно, это служит механизмом защиты клеток от самопереваривания о том случае, если лизосомный фермент случайно попадет в цитоплазму.

Различают первичные и вторичные лизосомы. Первые образуются в области аппарата Гольджи, в них находятся ферменты в неактивном состоянии, вторые же содержат активные ферменты. Обычно ферменты лизосом активируются при понижении рН. Среди лизосом можно также выделить гетеролизосомы (переваривающие материал, поступающий в клетку извне -- путём фаго- или пиноцитоза) и аутолизосомы (разрушающие собственные белки или органоиды клетки). Наиболее широко используется следующая классификация лизосом и связанных с ними компартментов:

Ранняя эндосома -- в неё поступают эндоцитозные (пиноцитозные) пузырьки. Из ранней эндосомы рецепторы, отдавшие (из-за пониженного рН) свой груз, возвращаются на наружную мембрану.

Поздняя эндосома -- в неё из ранней эндосомы поступают пузырьки с материалом, поглощённом при пиноцитозе, и пузырьки из аппарата Гольджи с гидролазами. Рецепторы маннозо-6-фосфата возвращаются из поздней эндосомы в аппарат Гольджи.

Лизосома -- в неё из поздней эндосомы поступают пузырьки со смесью гидролаз и перевариваемого материала.

Фагосома -- в неё попадают более крупные частицы (бактерии и т. п.), поглощённые путём фагоцитоза. Фагосомы обычно сливаются с лизосомой.

Аутофагосома -- окружённый двумя мембранами участок цитоплазмы, обычно включающий какие-либо органоиды и образующийся при макроаутофагии. Сливается с лизосомой.

Мультивезикулярные тельца -- обычно окружены одинарной мембраной, содержат внутри более мелкие окружённые одинарной мембраной пузырьки. Образуются в результате процесса, напоминающего микроаутофагию, но содержат материал, полученный извне. В мелких пузырьках обычно остаются и затем подвергаются деградации рецепторы наружной мембраны (например, рецепторы эпидермального фактора роста). По стадии формирования соответствуют ранней эндосоме.

Остаточные тельца (телолизосомы) -- пузырьки, содержащие непереваренный материал (в частности, липофусцин). В нормальных клетках сливаются с наружной мембраной и путем экзоцитоза покидают клетку. При старении или патологии накапливаются.

Функциями лизосом являются:

переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)

аутофагия -- уничтожение ненужных клетке структур, к примеру, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки

Автолиз -- саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Некоторые редко встречающиеся заболевания связаны с генетическими дефектами лизосомных ферментов, так как эти ферменты участвуют в деградации гликогена (гликогенозы), липидов (липидозы) и протеогликанов(мукополисахаридозы). Продукты, которые не могут участвовать в метаболизме из-за дефектов или отсутствия соответствующих ферментов, накапливаются в остаточных телах, что приводит к необратимому повреждению клеток и как результат к нарушению функций соответствующих органов.

Пероксисома

Обязательная органелла эукариотической клетки, ограниченная мембраной, содержащая большое количество ферментов, катализирующих окислительно-восстановительные реакции (оксидазы D-аминокислот, уратоксидазы и каталазы). Имеет размер от 0,2 до 1,5 мкм, отделена от цитоплазмы одной мембраной.

Набор функций пероксисом различается в клетках разных типов. Среди них: окисление жирных кислот, фотодыхание, разрушение токсичных соединений, синтез желчных кислот, холестерина, а также построение миелиновой оболочки нервных волокон, и т. д. Наряду с митохондриями пероксисомы являются главными потребителями O2 в клетке.

В пероксисоме обычно присутствуют ферменты, использующие молекулярный кислород для отщепления атомов водорода от некоторых органических субстратов () с образованием перекиси водорода ():

Каталаза использует образующуюся для окисления множества субстратов -- например, фенолов, муравьиной кислоты, формальдегида и этанола:

Этот тип окислительных реакций особенно важен в клетках печени и почек, пероксисомы которых обезвреживают множество ядовитых веществ, попадающих в кровоток. Почти половина поступающего в организм человека этанола окисляется до ацетальдегида этим способом. Кроме того, реакция имеет значения для детоксикации клетки от самой перекиси водорода.

Длительность жизни пероксисом незначительная -- всего 5-6 суток. Новые органоиды образуются чаще всего в результате деления предшествующих, как митохондрии. Они, однако, могут формироваться и de novo из эндоплазматического ретикулума.

Все ферменты, находящиеся в пероксисоме, должны быть синтезированы на рибосомах вне её. Для их переноса из цитозоля внутрь органеллы мембраны пероксисом имеют систему избирательного транспорта. Открыты бельгийским цитологом Кристианом де Дювом в 1965.

Аппарат Гольджи является компонентом всех эукариотических клеток (практически единственное исключение - эритроциты млекопитающих). Он представляет собой важнейшую мембранную органеллу, управляющую процессами внутриклеточного транспорта. Основными функциями аппарата Гольджи являются модификация, накопление, сортировка и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки. Он состоит из набора окруженных мембраной уплощенных цистерн, напоминающих стопку тарелок. Со стопками Гольджи всегда ассоциирована масса мелких (диаметром приблизительно 60 нм) ограниченных мембраной пузырьков. Многие пузырьки являются окаймленными и покрыты клатрином или другим специфическим белком. Аппарат Гольджи имеет две разные стороны: формирующуюся, или цис-сторону и зрелую, или транс-сторону. Цис-сторона тесно связана с переходными элементами ЭР; транс-сторона расширяется, образуя трубчатый ретикулум, называемый транс-сетью Гольджи. Белки и липиды в составе небольших пузырьков попадают в стопку Гольджи с цис-стороны, а покидают ее, направляясь в различные компартменты, вместе с пузырьками, образующимися на транс-стороне. Переходя из одной стопки Гольджи в другую, эти молекулы претерпевают последовательные серии модификаций.

Хорошо развитый аппарат Гольджи присутствует не только в секреторных, но и практически во всех клетках эукариотических организмов.

Функции

  • 1) сортировку, накопление и выведение секреторных продуктов;
  • 2) завершение посттрансляционной модификации белков (гликозилирование, сульфатированиеи т.д.);
  • 3) накопление молекул липидов и образование липопротеидов;
  • 4) образование лизосом;
  • 5) синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений (гемицеллюлоза, пектины) и т.п.
  • 6) формирование клеточной пластинки после деления ядра в растительных клетках;
  • 7) участие в формировании акросомы;
  • 8) формирование сократимых вакуолей простейших.

В Комплексе Гольджи выделяют 3 отдела цистерн, окружённых мембранными пузырьками:

Цис-отдел (ближний к ядру);

Медиальный отдел;

Транс-отдел (самый отдалённый от ядра).

Эти отделы различаются между собой набором ферментов. В цис-отделе первую цистерну называют «цистерной спасения», так как с её помощью рецепторы, поступающие из промежуточной эндоплазматической сети, возвращаются обратно. Фермент цис-отдела: фосфогликозидаза (присоединяет фосфат к углеводу -- маннозе). В медиальном отделе находится 2 фермента: манназидаза (отщепляет манназу) и N-ацетилглюкозаминтрансфераза (присоединяет определенные углеводы -- гликозамины). В транс-отделе ферменты: пептидаза (осуществляет протеолиз) и трансфераза (осуществляет переброс химических групп).

Аппарат Гольджи асимметричен -- цистерны, располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки -- везикулы, отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭПР), на мембранах которого и происходит синтез белков рибосомами. Возвращение белков из аппарата Гольджи в ЭПС требует наличия специфической сигнальной последовательности (лизин-аспарагин-глутамин-лейцин) и происходит благодаря связыванию этих белков с мембранными рецепторами в цис-Гольджи.

В цистернах аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам в органеллы, в которых происходят их модификации -- гликозилирование и фосфорилирование. При О-гликозилировании к белкам присоединяются сложные сахара через атом кислорода. При фосфорилировании происходит присоединение к белкам остатка ортофосфорной кислоты. Созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своеобразного «знака качества».

Транспорт белков из аппарата Гольджи

В конце концов от транс-Гольджи отпочковываются пузырьки, содержащие полностью зрелые белки. Главная функция аппарата Гольджи -- сортировка проходящих через него белков. В аппарате Гольджи происходит формирование «трехнаправленного белкового потока»:

созревание и транспорт белков плазматической мембраны;

созревание и транспорт секретов;

созревание и транспорт ферментов лизосом.

С помощью везикулярного транспорта прошедшие через аппарат Гольджи белки доставляются «по адресу» в зависимости от полученных ими в аппарате Гольджи «меток».

Образование лизосом

Многие гидролитические ферменты лизосом проходят через аппарат Гольджи, где они получают «метку» в виде специфического сахара -- маннозо-6-фосфата (М6Ф)- в составе присоединенного к аминокислотной цепочке олигосахарида. Добавление этой метки происходит при участии двух ферментов. Фермент N-ацетилглюкозаминфосфотрансфераза специфически опознает лизосомальные гидролазы по деталям их третичной структуры и присоединяет N-ацетилглюкозаминфосфат к шестому атому нескольких маннозных остатков олигосахарида гидролазы. Второй фермент -- фосфогликозидаза -- отщепляет N-ацетилглюкозамин, создавая М6Ф-метку. Затем эта метка опознается белком-рецептором М6Ф, с его помощью гидролазы упаковываются в везикулы и доставляются в лизосомы. Там, в кислой среде, фосфат отщепляется от зрелой гидролазы.

Транспорт белков на наружную мембрану

Как правило, ещё в ходе синтеза белки наружной мембраны встраиваются своими гидрофобными участками в мембрану эндоплазматической сети. Затем в составе мембраны везикул они доставляются в аппарат Гольджи, а оттуда -- к поверхности клетки. При слиянии везикулы с плазмалеммой такие белки остаются в ее составе, а не выделяются во внешнюю среду, как те белки, что находились в полости везикулы.

Поддерживающая форму и некоторые особенности морфологии ядра. В состав ядерного матрикса входят ядерная ламина , остаточное ядрышко и так называемый диффузный матрикс - сеть филаментов и гранул, соединяющих ядерную ламину с остаточным ядрышком .

Впервые компоненты ядерного матрикса были выделены и описаны в начале 1960-х годов . Термин «ядерный матрикс» был введён в середине 1970-х годов в связи с накоплением сведений о нехроматиновых белках ядерного скелета и его роли в функционировании клеточного ядра. Термин был введён для обозначения остаточных структур ядра, которые могут быть получены в результате последовательных экстракций ядер .

Описание [ | ]

Ядерный матрикс можно получить при обработке изолированных ядер нуклеазами и последующей экстракции гистонов 2М раствором NaCl . Как таковой ядерный матрикс не является чёткой морфологической структурой . Состав ядерного матрикса, оставшегося после экстракции из ядра хроматина и удаления ядерной оболочки при помощи неионных детергентов , а также удаления остатков ДНК и РНК при помощи нуклеаз, сходен у различных объектов. Он на 98 % состоит из негистоновых белков , а также содержит 0,1 % ДНК, 1,2 % РНК и 1,1 % фосфолипидов . Белковый состав ядерного матрикса примерно одинаков в клетках разных типов. Для него характерно присутствие ламинов , а также многих минорных белков массами от 11-13 до 200 кДа .

Морфологически ядерный матрикс состоит из ядерной ламины, диффузного матрикса (также известного как внутренняя, или интерхроматиновая, сеть) и остаточного ядрышка. Ламина представляет собой белковый сетчатый слой, выстилающий внутреннюю мембрану ядерной оболочки . Диффузный матрикс выявляется только после выделения из ядра хроматина. Он представляет собой рыхлую фиброзную сеть, расположенную между участками хроматина. Иногда в его состав входят рибонуклеопротеиновые гранулы. Остаточное ядрышко - это плотная структура, повторяющая формой ядрышко и состоящая из плотно уложенных фибрилл .

Петли ДНК, которые связаны с ядерным матриксом, являются обособленными топологическими доменами . Показано, что в ядрах имеется от 60 000 до 125 000 участков ДНК, защищённых от нуклеаз и расположенных на всех трёх компонентах ядерного матрикса. Для образования участков прикрепления петель ДНК к ядерному матриксу важны MAR-элементы (SAR, S/MAR) - элементы генома , которые специфически связываются с изолированным ядерным матриксом в условиях in vitro . В состав этих элементов входит ДНК длиной около 200 пар оснований , и они располагаются на расстоянии от 5 до 112 000 п. н. друг от друга. У фруктовой дрозофилы в ядре имеется как минимум 10 000 MAR .

Места расположения элементов MAR очень сходны с сайтами связывания ДНК с , задействованной в образовании петель хроматина. Показано, что ядерный матрикс связан с репликацией ДНК : более 70 % новосинтезированной ДНК локализуется в зоне внутреннего ядерного матрикса. Фракция ДНК, связанная с ядерным матриксом, обогащена репликативными вилками. Кроме того, в составе ядерного матрикса обнаружена

Лекция № .

Количество часов: 2

Клеточное ЯДРО

1. Общая характеристика интерфазного ядра. Функции ядра

2.

3.

4.

1. Общая характеристика интерфазного ядра

Ядро - это важнейшая составная часть клетки, которая имеется практически во всех клетках многоклеточных организмов. Большинство клеток имеет одно ядро, но бывают двуядерные и многоядерные клетки (например, поперечно-полосатые мышечные волокна). Двуядерность и многоядерность обусловлены функциональными особенностями или патологическим состоянием клеток. Форма и размеры ядра очень изменчивы и зависят от вида организма, типа, возраста и функционального состояния клетки. В среднем объем ядра составляет приблизительно 10% от общего объема клетки. Чаще всего ядро имеет округлую или овальную форму размером от 3 до 10 мкм в диаметре. Минимальный размер ядра составляет 1 мкм (у некоторых простейших), максимальный - 1 мм (яйцеклетки некоторых рыб и земноводных). В некоторых случаях наблюдается зависимость формы ядра от формы клетки. Ядро обычно занимает центральное положение, но в дифференцированных клетках может быть смещено к периферийному участку клетки. В ядре сосредоточена практически вся ДНК эукариотической клетки.

Основными функциями ядра являются:

1) Хранение и передача генетической информации;

2) Регуляция синтеза белка, обмена веществ и энергии в клетке.

Таким образом, ядро является не только вместилищем генетического материала, но и местом, где этот материал функционирует и воспроизводится. Поэтому нарушение любой из этих функций приведет к гибели клетки. Все это указывает на ведущее значение ядерных структур в процессах синтеза нуклеиновых кислот и белков.

Одним из первых ученых продемонстрировавших роль ядра в жизнедеятельности клетки был немецкий биолог Хаммерлинг. В качестве экспериментального объекта Хаммерлинг использовал крупные одноклеточные морские водоросли Acetobularia mediterranea и А. c renulata. Эти близкородственные виды хорошо отличаются друг от друга по форме «шляпки». В основании стебелька находится ядро. В одних экспериментах шляпку отделяли от нижней части стебелька. В результате было установлено, что для нормального развития шляпки необходимо ядро. В других экспериментах стебелек с ядром одного вида водоросли соединялся со стебельком без ядра другого вида. У образовавшихся химер всегда развивалась шляпка, типичная для того вида, которому принадлежало ядро.

Общий план строения интерфазного ядра одинаков у всех клеток. Ядро состоит из ядерной оболочки, хроматина, ядрышек, ядерного белкового матрикса и кариоплазмы (нуклеоплазмы). Эти компоненты встречаются практически во всех неделящихся клетках эукариотических одно- и многоклеточных организмов.

2. Ядерная оболочка, строение и функциональное значение

Ядерная оболочка (кариолемма, кариотека) состоит из внешней и внутренней ядерных мембран толщиной по 7 нм. Между ними располагается перинуклеарное пространство шириной от 20 до 40 нм. Основными химическими компонентами ядерной оболочки являются липиды (13-35%) и белки (50-75%). В составе ядерных оболочек обнаруживаются также небольшие количества ДНК (0-8%) и РНК (3-9%). Ядерные оболочки характеризуются относительно низким содержанием холестерина и высоким - фосфолипидов. Ядерная оболочка непосредственно связана с эндоплазматической сетью и содержимым ядра. С обеих сторон к ней прилегают сетеподобные структуры. Сетеподобная структура, выстилающая внутреннюю ядерную мембрану, имеет вид тонкой оболочки и называется ядерной ламиной. Ядерная ламина поддерживает мембрану и контактирует с хромосомами и ядерными РНК. Сетеподобная структура, окружающая наружную ядерную мембрану, гораздо менее компактна. Внешняя ядерная мембрана усеяна рибосомами, участвующими в синтезе белка. В ядерной оболочке имеются многочисленные поры диаметром около 30-100 нм. Количество ядерных пор зависит от типа клетки, стадии клеточного цикла и конкретной гормональной ситуации. Так чем интенсивнее синтетические процессы в клетке, тем больше пор имеется в ядерной оболочке. Ядерные поры довольно лабильные структуры, т. е. в зависимости от внешнего воздействия способны изменять свой радиус и проводимость. Отверстие поры заполнено сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют ядерным поровым комплексом. Сложный комплекс пор имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит средство построения концептуальных моделей стороны ядра, другой - средство построения концептуальных моделей стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От гранул отходят фибриллярные отростки. Такие фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму, поперек поры. В центре отверстия часто можно видеть так называемую центральную гранулу.

Ядерно-цитоплазматический транспорт

Процесс транслокации субстрата через ядерную пору (для случая импорта) состоит из нескольких стадий. На первой стадии транспортирующийся комплекс заякоривается на обращенной в цитоплазму фибрилле. Затем фибрилла сгибается и перемещает комплекс ко входу в канал ядерной поры. Происходит собственно транслокация и освобождение комплекса в кариоплазму. Известен и обратный процесс - перенос веществ из ядра в цитоплазму. Это в первую очередь касается транспорта РНК синтезируемого исключительно в ядре. Также существует другой путь переноса веществ из ядра в цитоплазму. Он связан с образованием выростов ядерной оболочки, которые могут отделяться от ядра в виде вакуолей, а затем содержимое их изливается или выбрасывается в цитоплазму.

Таким образом, обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями: через поры и путем отшнуровывания.

Функции ядерной оболочки:

1. Барьерная. Эта функция заключается в отделении содержимого ядра от цитоплазмы. В результате оказываются пространственно разобщенными процессы синтеза РНК/ДНК от синтеза белка.

2. Транспортная. Ядерная оболочка активно регулирует транспорт макромолекул между ядром и цитоплазмой.

3. Организующая. Одной из основных функций ядерной оболочки является ее участие в создании внутриядерного порядка.

3. Строение и функции хроматина и хромосом

Наследственный материал может находиться в ядре клетки в двух структурно-функциональных состояниях:

1. Хроматин. Это деконденсированное, метаболически активное состояние, предназначенное для обеспечения процессов транскрипции и редупликации в интерфазе.

2. Хромосомы. Это максимально конденсированное, компактное, метаболически неактивное состояние, предназначенное для распределения и транспортировки генетического материала в дочерние клетки.

Хроматин. В ядре клеток выявляются зоны плотного вещества, которые хорошо окрашиваются основными красителями. Эти структуры получили название "хроматин" (от греч. «хромо» цвет, краска). Хроматин интерфазных ядер представляет собой хромосомы, находящиеся в деконденсированном состоянии. Степень деконденсации хромосом может быть различной. Зоны полной деконденсации называются эухроматином. При неполной деконденсации в интерфазном ядре видны участки конденсированного хроматина, называемого гетерохроматином. Степень деконденсации хроматина в интерфазе отражает функциональную нагрузку этой структуры. Чем "диффузнее" распределен хроматин в интерфазном ядре, тем интенсивнее в нем синтетические процессы. Уменьшение синтеза РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина. Максимальная конденсация конденсированного хроматина достигается во время митотического деления клеток. В этот период хромосомы не выполняют никаких синтетических функций.

В химическом отношении хроматин состоит из ДНК (30-45%), гистонов (30-50%), негистонных белков (4-33%) и небольшого количества РНК. ДНК эукариотических хромосом представляет собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. Репликоны - участки ДНК, которые синтезируются как независимые единицы. Репликоны имеют начальную и терминальную точки синтеза ДНК. РНК представляет собой все известные клеточные типы РНК, находящиеся в процессе синтеза или созревания. Гистоны синтезируются на полисомах в цитоплазме, причем этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами. Хроматиновая нить представляет собой двойную спираль ДНК, окружающую гистоновый стержень. Она состоит из повторяющихся единиц – нуклеосом. Количество нуклеосом огромно.

Хромосомы (от. греч. хромо и сома) - это органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов.

Хромосомы представляют собой палочковидные структуры разной длины с довольно постоянной толщиной. У них имеется зона первичной перетяжки, которая делит хромосому на два плеча. Хромосомы с равными называют метацентрическими , с плечами неодинаковой длины - субметацентрическими. Хромосомы с очень коротким, почти незаметным вторым плечом называются акроцентрическими.

В области первичной перетяжки находится центромера, представляющая собой пластинчатую структуру в виде диска. К центромере прикрепляются пучки микротрубочек митотического веретена, идущие в направлении к центриолям. Эти пучки микротрубочек принимают участие в движении хромосом к полюсам клетки при митозе. Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют ядрышковыми организаторами. Здесь локализована ДНК, ответственная за синтез р-РНК. Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами. В отличие от них разорванные концы хромосом могут присоединяться к таким же разорванным концам других хромосом.

Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные - у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм.

Число хромосом у различных объектов также значительно колеблется, но характерно для каждого вида животных или растений. У некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева. Наименьшее количество хромосом (2 на диплоидный набор) наблюдается у малярийного плазмодия, лошадиной аскариды. У человека число хромосом составляет 46, у шимпанзе, таракана и перца 48, плодовая мушка дрозофила – 8, домашняя муха – 12, сазана – 104, ели и сосны – 24, голубя - 80.

Кариотип (от греч. Карион - ядро, ядро ореха, операторы - образец, форма) - совокупность признаков хромосомного набора (число, размер, форма хромосом), характерные для того или иного вида.

Особи разного пола (особенно у животных) одного и того же вида могут различаться по числу хромосом (различие чаще всего на одну хромосому). Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом. Следовательно, структура кариотипа может быть таксономическим признаком.

Во второй половине 20 века в практику хромосомного анализа стали внедряться методы дифференциального окрашивания хромосом. Считается, что способность отдельных участков хромосом к окрашиванию связана с их химическими различиями.

4. Ядрышко. Кариоплазма. Ядерный белковый матрикс

Ядрышко (нуклеола) - обязательный компонент клеточного ядра эукариотных организмов. Однако имеются некоторые исключения. Так ядрышки отсутствуют в высокоспециализированных клетках, в частности в некоторых клетках крови. Ядрышко представляет собой плотное тельце округлой формы величиной 1-5 мкм. В отличие от цитоплазматических органоидов ядрышко не имеет мембраны, которая окружала бы его содержимое. Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках. Ядрышко является производным хромосомы. В состав ядрышка входят белок, РНК и ДНК. Концентрация РНК в ядрышках всегда выше концентрации РНК в других компонентах клетки. Так концентрация РНК в ядрышке может быть в 2-8 раз выше, чем в ядре, и в 1-3 раза выше, чем в цитоплазме. Благодаря высокому содержанию РНК, ядрышки хорошо окрашиваются основными красителями. ДНК в ядрышке образует большие петли, которые носят название «ядрышковые организаторы». От них зависит образование и количество ядрышек в клетках. Ядрышко неоднородно по своему строению. В нем выявляются два основных компонента: гранулярный и фибриллярный. Диаметр гранул около 15-20 нм, толщина фибрилл – 6-8 нм. Фибриллярный компонент может быть сосредоточен в центральной части ядрышка, а гранулярный - по периферии. Часто гранулярный компонент образует нитчатые структуры - нуклеолонемы толщиной около 0, 2 мкм. Фибриллярный компонент ядрышек представляет собой рибонуклеопротеидные тяжи предшественников рибосом, а гранулы - созревающие субъединицы рибосом. Функция ядрышка заключается в образовании рибосомных РНК (рРНК) и рибосом, на которых происходит синтез полипептидных цепей в цитоплазме. Механизм образования рибосом следующий: на ДНК ядрышкового организатора образуется предшественник рРНК, который в зоне ядрышка одевается белком. В зоне ядрышка происходит сборка субъединиц рибосом. В активно функционирующих ядрышках синтезируется 1500-3000 рибосом в минуту. Рибосомы из ядрышка через поры в ядерной оболочке поступают на мембраны эндоплазматической сети. Количество и образование ядрышек связано с активностью ядрышковых организаторов. Изменения числа ядрышек могут происходить за счет слияния ядрышек или при сдвигах в хромосомном балансе клетки. Обычно в ядрах содержится несколько ядрышек. В ядрах некоторых клеток (ооциты тритонов) содержится большое количество ядрышек. Это явление получило название амплификации. Оно заключается в организации систем управления качеством, что происходит сверхрепликация зоны ядрышкового организатора, многочисленные копии отходят от хромосом и становятся дополнительно работающими ядрышками. Такой процесс необходим для накопления огромного количества рибосом на яйцеклетку. Благодаря этому обеспечивается развитие эмбриона на ранних стадиях даже при отсутствии синтеза новых рибосом. Сверхчисленные ядрышки после созревания яйцевой клетки исчезают.

Судьба ядрышка при делении клеток. По мере затухания синтеза р-РНК в профазе происходит разрыхление ядрышка и выход готовых рибосом в кариоплазму, а затем и в цитоплазму. При конденсации хромосом фибриллярный компонент ядрышка и часть гранул тесно ассоциируют с их поверхностью, образуя основу матрикса митотических хромосом. Этот фибриллярно-гранулярный материал переносится хромосомами в дочерние клетки. В ранней телофазе по мере деконденсации хромосом происходит высвобождение компонентов матрикса. Его фибриллярная часть начинает собираться в мелкие многочисленные ассоциаты - предъядрышки, которые могут объединяться друг с другом. По мере возобновления синтеза РНК предъядрышки превращаются в нормально функционирующие ядрышки.

Кариоплазма (от греч. < карион > орех, ядро ореха), или ядерный сок, в виде бесструктурной полужидкой массы окружает хроматин и ядрышки. Ядерный сок содержит белки и различные РНК.

Ядерный белковый матрикс (ядерный скелет) - каркасная внутриядерная система, которая служит для поддержания общей структуры интерфазного ядра объединения всех ядерных компонентов. Представляет собой нерастворимый материал, остающийся в ядре после биохимических экстракций. Он не имеет четкой морфологической структуры и состоит на 98% из белков.